Algorithm-Based Fault Tolerance for
Spaceborne Computing:
Basis and Implementations

Michael Turmon and Robert Granat
Machine Learning Systems Group, M/S 126-347
Jet Propulsion Laboratory
Pasadena, CA 91109
+1-818-393-5370
{turmon, granat }Qaig. jpl.nasa.gov

Abstract —We describe and test the mathematical
background for using checksum methods to validate
results returned by a numerical subroutine operat-
ing in a fault- prone environment that causes unpre-
dictable errors in data. We can treat subroutines
whose results satisfy a necessary condition of a linear
form; the checksum tests compliance with this nec-
essary condition. These checksum schemes are called
algorithm-based fault tolerance (ABFT). We discuss
the theory and practice of setting numerical tolerances
to separate errors caused by a fault from those inher-
ent in finite-precision numerical calculations. Two se-
ries of tests are described. The first tests the general
effectiveness of the linear ABFT schemes we propose,
and the second verifies the correct behavior of our par-
allel implementation of them. We find that under sim-
ulated fault conditions, it is possible to choose a fault
detection scheme that for average case matrices can
detect 99% of faults with no false alarms, and that
for a “worst-case” matrix population can detect 80%
of faults with no false alarms.

TABLE OF CONTENTS

. INTRODUCTION

. GENERAL CONSIDERATIONS

. ERROR PROPAGATION: THEORY

. ERROR PROPAGATION: IMPLEMENTATION

. REsuULTS: SIMULATED FAULT CONDITIONS

. RESULTS: FAULT-FREE PARALLEL OPERATION
. CONCLUSIONS

O WN

0-7803-5846-5/00/$10.00 © 2000 IEEE

1. INTRODUCTION

Recently, there has been growing interest in transfer-
ing commercial high-performance computing technol-
ogy into ultra-low power fault-tolerant architectures
for space, with the aim of enabling new science investi-
gation and discovery. Spaceborne science applications
that intend to take advantage of this computing ca-
pability include the Next Generation Space Telescope
(NGST), the Orbiting Thermal Imaging Spectrome-
ter (OTIS), and the Solar Terrestrial Probe Project
(STP). All of these applications require large amounts
of computing capacity, as well as performance/power
ratios that are at least an order of magnitude above
those available in today’s spacecraft.

However, as the processors to be used are cur-
rent off-the-shelf components, they are not radiation-
hardened, and will suffer from single event upsets
(SEUs). The SEUs that occur require that the ap-
plications be self-checking, or tolerant of errors. It is
in this context that we describe and test the math-
ematical background for using checksum methods to
validate results returned by a numerical subroutine
operating in an environment where SEUs can lead to
unpredictable errors in data. We can treat subrou-
tines that return results satisfying a necessary condi-
tion having a linear form; the checksum tests com-
pliance with this necessary condition. These check-
sum schemes are called algorithm-based fault toler-
ance (ABFT). Here we discuss the theory and prac-
tice of setting numerical tolerances to separate er-
rors caused by a fault from those inherent in finite-
precision numerical calculations.

To separate these two classes of errors, we employ well-
known bounds on error-propagation within linear al-
gebraic algorithms. These bounds provide a maximum
error that is to be expected due to register effects; any
error in excess of this is taken to be the product of a
fault. Adapting these bounds to the ABFT setting
yields a series of tests having different efficiency and
accuracy attributes.

Characteristics of a given scheme are concisely ex-
pressed using the standard receiver operating char-
acteristic (ROC) curve. For a given error tolerance,

411

412

a certain proportion of False Alarms (numerical er-
rors tagged as data faults) and Detections (data faults
correctly identified) will be observed. The ROC plots
these two proportions parametrically as the tolerance
is varied; this describes the performance achievable
by a certain detection scheme and provides a basis
for choosing one scheme over others. Two series of
tests are described here. The first shows the general
effectiveness of the linear ABFT schemes we have pro-
posed, and the second verifies the correct behavior of
our parallel implementation of them.

We close this introduction by introducing some use-
ful notation. Matrices and vectors are written in up-
percase and lowercase roman letters; AT is the trans-
pose of the matrix A. Any identity matrix is always
I; context provides its dimension. A is orthogonal if
AAT = I. A square matrix is a permutation if it can
be obtained by re-ordering the rows of I. The size of
a vector v is measured by its p-norm, a non-negative
real number ||v||p; similarly for matrices A. See [3]
(hereafter abbreviated GVL), sections 2.2 and 2.3, for
the definitions. The submultiplicative property of p-
norms implies that ||AB||, < ||A]p||B}lp and similarly
for vectors.

2. GENERAL CONSIDERATIONS

In this paper we are concerned with these operations:

e Product: find the product AB = P, given A and
B.

e LU decomposition: factor 4 as A = PLU with
P a permutation matrix, L unit lower-triangular,
and U upper-triangular.

o Singular value decomposition: factor a square A
as A = UDVT where D is diagonal and U and
V are orthogonal matrices.

e System solution: solve for z in Az = b when given
Aandb

e Matrix inverse: given A, find B such that AB =
I.

Although standard linear algebra packages provide
many other routines, the ones above were identified
by science application teams as the being of the most
interest, partly on the basis of amount of time spent
within them.

Each of these operations has been written to empha-
size that some linear relation holds among the sub-
routine inputs and its computed outputs; we call this
the postcondition. For the product, system solution,
and inverse, this postcondition is necessary and suf-
ficient, and completely characterizes the subroutine’s
task. For the other two, the postcondition is only
a necessary condition and valid results must enjoy
other properties as well. In either case, identifying and
checking the postcondition provides a powerful sanity
check on the proper functioning of the subroutine.

Before proceeding to examine these operations in
detail, we mention two points involved in design-
ing ABFT techniques. Suppose for definiteness that

we plan to check one m x n matrix. Any reason-
able checksum scheme must depend on the content
of each matrix entry, otherwise some entries would
not be checked. This implies that simply comput-
ing a checksum requires O(mn) operations. Checksum
ABFT schemes thus lose their attractiveness for oper-
ations taking O(mn) or fewer operations (e.g. trace,
sum, and 1-norm) because it is simpler and more di-
rectly informative to achieve fault-tolerance by repeat-
ing the computation. The second general point is
that, although the postconditions above are linearly-
checkable equalities, they need not be. For example,
the largest eigenvalue of A is bounded by functions of
the 1-norm and the oo-norm, both of which are easily
computed but not linear. One could thus evaluate the
sanity of a computation by checking postconditions
that involve such inequalities. None of the operations
we consider requires this level of generality.

The postconditions we consider generically involve
comparing two linear maps, which are known in fac-
torized form

Li\Ly---Ly=RRy---R, . (1)

This check can be done exhaustively via n linearly in-
dependent probes for an n x n system. Of course, ex-
haustive comparison would typically introduce about
as much computation as would be required to recom-
pute the answer from scratch. On the other hand, a
typical fault to data fans out across the matrix out-
puts, and a single probe would be enough to catch
most errors:

L1L2 o pr ; Rle .. -wa (2)

for some probe vector w. This is the approach
originally recommended by Abraham and his col-
leagues [4] to implement ABFT in systolic arrays. It
has since been extended and refined by several re-
searchers [1, 2, 5, 7).

There are two designer-selectable choices controlling
the numerical properties of such an ABFT system:
the checksum weights w and the comparison method

indicated above by Z. When no assumptions may
be made about the operands, the first is relatively
straightforward: the elements of w should not vary
greatly in magnitude so that results figure essentially
equally in the check. (In particular, w should be ev-
erywhere nonzero.) In what follows, we let w be the
vector of all ones; our implementation allows any w to
be supplied by the user.

3. ERROR PROPAGATION: THEORY

After the checksum vector, the second choice is the
comparison method. As stated above, we perform
comparisons using the corresponding postcondition for
each operation. To develop a test that is roughly in-
dependent of the matrices at hand, we use the well-
known bounds on error propagation in linear oper-
ations. In what follows, we develop a test for each
operation of interest. For each operation, we cite a
result bounding the numerical error in the computa-
tion’s output, and then we use this bound to develop a
corollary defining a test which is roughly independent

of the operands. Throughout, we use u to represent
the numerical precision of the underlying hardware;
it is the difference between unity and the next larger
floating-point number. Also, [1 marks the end of a
result or corollary.

It is important to understand that the error bounds
given in the theorems are qualitative and determine
the general characteristics of roundoff in our check-
sum implementations. The estimates we obtain in
this section are bounds based on worst-case scenar-
ios, and will typically predict roundoff error larger
than practically observed. (See GVL, section 2.4.6,
for more on this outlook.) In the ABFT context, using
these bounds uncritically would mean setting thresh-
olds too high and missing some fault-induced errors.
Their value for us, and it is substantial, is to indicate
how roundoff error scales with different inputs. This
allows ABFT routines the opportunity to factor out
the inputs, yielding performance that is more nearly
input-independent. Of course, some problem-specific
tuning will likely improve performance. Our goal is to
simplify this tuning process as much as possible.

Result 1 Let P = mult(A, B) be computed using a
dot-product, outer-product, or gazpy-based algorithm.

The n x n forward error matric E = P — AB satisfies

[Elloc < nl|Allco|| Bllooua (3)
Proof. See GVL, section 2.4.8. 0

Corollary 2 An input-independent checksum test for
mult s

d = Pw — ABw (4)
Illoo/ (I Allso I Blloolwllos) = Tu (5)

where T is an input-independent threshold.

The test is expressed as a comparison (indicated by the

2 relation) with a threshold; the latter is a scaled ver-
sion of the floating-point accuracy. If the discrepancy
is larger than 7u, a fault would be declared, otherwise
the error is explainable by roundoff.

Proof. The difference d = Ew so, by the submulti-
plicative property of norms and theorem 1,
ldlloo < IElcollwlloo < nf|Alloo | Bfloollw]lcout

and the dependence on A and B is removed by divid-
ing by their norms. The factor of n is unimportant in
this calculation, as noted in the remark beginning the
section. O

For the remaining operations, we require the notion of
a numerically realistic matrix. The reliance of numer-
ical analysts on certain proven algorithms is based on
the rarity of certain pathological matrices that cause,
for example, pivot elements in decomposition algo-
rithms to grow exponentially. Even algorithms re-
garded as stable and reliable can be made to misbe-
have when given such unlikely inputs. Because the un-
derlying routines will fail under such pathological con-
ditions, we may neglect them in designing an ABFT

system; such a computation is doomed even without
faults. Accordingly, the theorems below must assume
that the inputs are numerically realistic to obtain us-
able error bounds.

Result 3 Let (P,L,U) = 1u(A) be computed using
a standard LU decomposition algorithm with partial
pivoting. The backward error matriz E defined by A+

E=PLU satisfies
[Ellco < 8n°p [|Afcoun (6)
where the growth factor p depends on the size of cer-

tain partial results of the calculation, and is bounded
by a small constant for numerically realistic matrices.

Proof. See GVL, section 3.4.6. O

We note in passing that this is close to the best pos-
sible bound for the discrepancy, because the error in
simply writing down the matrix A must be of order

l|Alla.

Corollary 4 An input-independent checksum test for
1u as applied to numerically realistic matrices is

d=PLUw - Aw (7)
l[dlloo/ (14lloolwlloo) < T (8)

where T is an input-independent threshold.

Proof. We have d = Ew so, by the submultiplicative
property of norms and theorem 3,

ldlloo < 1B lloollwlloo < 8% [| Alloo |w| oo

As before, the factor of 8n® is unimportant in this
calculation. For numerically realistic matrices, the
growth factor p is bounded by a constant, and the
indicated test is recovered by dividing by the norm of

O

Result 5 Let (0,15,‘7) = svd(A) be computed us-
ing a standard singular value decomposition algorithm.
The backward error matriz E defined by A+ E =

UDVT satisfies
Ell2 < pllAll2u 9)

where p is a constant not much larger than one for
numerically realistic matrices A.

Proof. See GVL, section 5.5.8. O

Corollary 6 An input-independent checksum test for
svd as applied to numerically realistic matrices is

d=UDVTw - Aw (10)
lidll2/(IAllzlwllz2) < 7u (11)

where T 15 an input-independent threshold.

413

Recommended Checksum Tests

Algorithm A o1 o2 o3 Note
mlt P-AB |A[|BI [P| [|Pu| —
lu PLU-A | All |PLU|| | Awl| g1 easier
an os
fAT NP]
svd UDV AA || Al HUDVA | “AuiH gﬁa?}a%lgr
inv. I—-AB [A[llA7Y 14llBl AllBw| | ABuw]
useless

Table 1: Algorithms considered here, and recommended checksum tests.

Proof. We have d = Ew so, by the submultiplicative
property of norms,

ldllz < 1 E]zllwlz < p|All2llw]l2u

and the dependence on A is removed by dividing by
its norm. The constant p is negligible for numerically
realistic matrices.

Corollary 7 An input-independent checksum test for
svd as applied to numerically realistic matrices is

d=UDVTw — Aw (12)

lldlloo/ (1Allcollwlloo) < 7u (13)
where T is an input-independent threshold.

Proof. By corollary 6, the check above with the 2-
norm in place of the co-norm is an input-independent
checksum test. But since these two norms are equiva-
lent in that

[wlloo < llwllz < v/nllwlleo
1/vn)lAlles < llAll2 £ vVm| Allo

(see GVL sections 2.2.2 and 2.3.2), the two tests are
also equivalent up to negligible constants. O

Result 8 Let B = inv(A) be computed using Gauss-
ian elimination with partial pivoting. The backward

error matriz E defined by (A+ E)~! = B satisfies
I1Elloo < 87°p [|A]lcou (14)

with p as in theorem 3.

Proof. See GVL, section 3.4.6, which defines the back-
wards error for the linear system solution Az = b.
Since A~ is calculated by solving the multiple right-
hand-side problem AA~! = I, the bound given there
on ||E|ls applies here with the same growth factor p.
(This growth factor depends only on the pivots in the
LU factorization which underlies the inverse compu-
tation.)

Corollary 9 An input-independent checksum test for
inv as applied to numerically realistic matrices is

d=w— ABw (15)

ldlloo/ (I Alloo | A floollwlloa) < Tu (16)
where T is an input-independent threshold.

414

Proof. See the appendix. [}

We remark that this bound on discrepancy, larger than
that for lu, is the reason matrix inversion is numeri-
cally unstable.

4. ERROR PROPAGATION:
IMPLEMENTATION

It is straightforward to transform these results into al-
gorithms for error detection via checksums. The prin-
cipal issue is computing the desired matrix norms effi-
ciently from results needed in the root calculation. For
example, in the matrix multiply, instead of computing

IAIB]], it is more efficient to compute ||C|| which
equals ||AB|| under fault-free conditions. By the sub-
multiplicative property of norms, ||AB]}| < ||A]||Bl,
so this substitution always underestimates the upper
bound on roundoff error, leading to false alarms. On
the other hand, we must remember that the norm
bounds are only general guides anyway. All that is
needed is for [JAB]| to scale as does || Al}|| B]|; the un-
known scale factor can be absorbed into 7.

Taking this one step farther, we might compute ||[Cw||
as a substitute for ||A||||B]||w||. Here we run an
even greater risk of underestimating the bound, es-
pecially if w is nearly orthogonal to the product, so it

is wise to use instead A||w|| + [[Cw|| for some problem-
dependent A. Extending this reasoning to the other
operations yields the comparisons in table 1. The er-
ror criterion used there always proceeds from the num-
ber § = ||Aw|| for the indicated difference matrix A;
this matrix is of course never explicitly computed. In
addition to the obvious

T0: &/ ||lwl| Zru (trivial test) (17)

we provide three other comparison tests

T1: §/(crflw||) 2 Tu (ideal test) (18)
T2: §/(o2]lw|]) 2 7u (approximate matrix(tes)t)
19

T3: §/(Ajw| +o3) Zru (approximate vector test)
(20)

The ideal test is the one recommended by the theoret-
ical error bounds, and is based on the supplied input

arguments, but may not be computable. In contrast,
both approximate tests are based on computed quan-
tities, and may also be suggested by the reasoning
above. The matriz test involves a matrix norm while
the wvector test involves a vector norm and is therefore
more subject to false alarms. (Several variants of the
matrix tests are available for these operations.) We

note that the obvious vector test for inv uses ABw,

but since B = inv(A), this test becomes essentially
equivalent to the trivial test. We therefore suggest
using the vector/matrix test shown in the table.

Clearly the choice of which test to use is based on
the interplay of computation time and fault-detection
performance for a given population of input matrices.
Because of the shortcomings of numerical analysis, we
cannot predict definitively that one test will outper-
form another. The experimental results reported in
the next section are one indicator of real performance,
and may motivate more detailed analysis of test be-
havior. Performance in application codes will be an-
other criterion for choosing tests.

5. RESULTS: SIMULATED FAULT
CONDITIONS

In this section we show results of Matlab simulations
of the proposed checksum tests. These simulations
are intended to verify the essential effectiveness of the
checksum technique for ABFT, as well as to sketch the
relative behaviors of the tests described above. Due to
the special nature of the population of test matrices,
and the shortcomings of the fault insertion scheme,
these results must not be taken as anything but an
estimate of relative performance, and a rough estimate
of ultimate absolute performance.

We briefly describe the simulation setup. In essence
a population of random matrices is used as input to
a given computation; faults are injected in half these
computations, and a checksum test is used to attempt
to identify the affected computations. Random test
matrices A of a given condition number k are gener-
ated by the rule

A=10*UDVT . (21)

The random matrices U and V are the orthogonal fac-
tors in the QR factorization of two square matrices
with normally distributed entries. The diagonal ma-
trix D, is filled in by choosing random singular values,
such that the largest singular value is unity and the
smallest is 1/x. These matrices all have 2-norm equal
to unity; the overall scale is set by « which is chosen
uniformly at random between -8 and +8. A total of
800 64 x 64 matrices (forty applications of the rule (21)

for each « in {21, ...,2%%}) is processed.

Faults are injected in half of these runs (400 of 800)
by first choosing a matrix to affect, and then flipping
exactly one bit of its 64-bit representation. For exam-
ple, if a call to malt is to suffer a simulated fault, first
A or B is selected at random, and then one bit of the
chosen matrix is toggled. If 1lu is to suffer a fault, one
of A, L, or U is selected and the fault is injected. If

A was selected, one can expect the computed L and

P* Across Experiments

Average-Case Worst-Case
All Sig. All Sig.

mult 0.86 1.00 0.63 0.92
inv 0.78 1.00 0.32 0.50
1u 0.60 1.00 043 0.90
svd 0.78 0.97 0.60 0.87
Mean 0.76 0.99 0.50 0.80

Table 2: Fault detection probability when no false
alarms are permitted. Worst-case results are taken
from the Matlab gallery matrices. Results when all
faults must be detected, and when only significant
faults must be detected, are shown.

U to have many incorrect elements; if L was selected,
only one element of the LU decomposition would be
in error. This scheme is intended to simulate errors
occurring at various times within the computation.
Within the context of these tests of fault detection
ability, we note that forbidding injection of multiple
faults makes the detection task harder, because multi-
ple faults would tend to cause larger, more apparent,
errors. At the system level, of course, higher fault-
injection rates make the computational task harder.

Next, each of the four tests described above is used to
identify faults; for a fixed 7 this implies observing a
certain false alarm rate and fault-detection rate. The
former is the proportion of trials in which a fault did
not occur but one was declared (due to an unexpect-
edly large numerical error); the latter is the propor-
tion in which an injected fault was correctly detected.
The pair (Pj,, P;) may be plotted parametrically ver-
sus 7 to obtain an ROC curve which illustrates the
performance achievable by a given test. See figure 1.
In these figures, T0 and T3 are the solid blue lines
with dots, with T0 in dark blue lying below T'3. T2
is shown in red asterisks, and T'1, the optimal test, in
green Crosses.

Of course, some missed fault detections are worse than
others since many faults occur in the low-order bits of
the mantissa and cause very minor changes in the ma-
trix. Accordingly, a second set of ROCs is shown in
figure 2. In this set, faults causing a minute perturba-
tion (less than one part in 1078, about the accuracy of
single-precision floating point) are screened from the
results entirely. This curve is more realistic for our
applications.

‘We may make some general observations about the re-
sults. Clearly T'0, the un-normalized test, fares poorly
in all experiments. This illustrates the value of the re-
sults on error propagation that form the basis for the
normalized tests. Generally speaking,

ToxT3<T2=T1 . (22)

This confirms theory, in which T'1 is the ideal test and
the others approximate it. In particular, T'1 and T2
are quite similar because generally only an enormous
fault can change the norm of a matrix — these cases
are easy to detect.

Further, we note that the most relevant part of the
ROC curve is when Py, &~ 0; we may in fact be inter-
ested in the value P*, defined to be Py when Py, = 0.

415

416

0.9
Py

0.8

0.7¢

ROC: Multiply, All Faults Included

Average-case Matrices, All Faults

ROC: Inverse, All Faults Included

Py

iwi i
E 1Al (B fw]
v neiw A jAllenat vl |
. 1+|ABwW : 1+ |Aw] [Bhat|
1) ‘ 1 1 m i ! " L " " 1 1 1
0.1 0.2 0.3 04 05 06 07 0.8 08 1 [+ 0.1 02 03 04 05 06 0.7 0.8 0.9 1

Pja

ROC: LU Decomposition, All Faults included

ROC: SVD, All Faults Included

Py,

T T —T

. W] N : : fwi 1
+ IA] {w] : + 1Al iw]
L |Ahat] |w] < - » [Anat| jw} e
. 1+ |Ahatw| . 1+ |Ahatw|
P N 1 3 ' 1 1 f 1 i " 1 n i) N L
0.1 0.2 03 04 05 06 07 0.8 0.9 1 [0.1 0.2 0.3 0.4 05 0.6 07 08 0.9 1
Psa Py,

ROC for random matrices of bounded condition number, including all faults.

Average-case Matrices, Significant Faults

uding Faults < 1.0e-08

ROC: Inverse, Excluding Faults < 1.0e-08

ROC: Multiply, Excli
T T

* T 5T

w|

1Al 1B] {w]
|A B |w|
1+|ABwW|

wi

A} [B] w]

[A] [Bhat] {w|
1+ |Aw] [Bhat|

2 ‘ " N 1 1 L

ROC: LU, Excluding Faults < 1.0e-08

0.8 0.9

Py,

02 0.3 04 05 06 07 08 08 1

Py,

ROC: SVD, Excluding Faults < 1.0e-08

M

................ K wl . " wl .
: + 1AL W] + [A] Iw}
: - [Ahat] |w| E » |Anat| jw] E
: - 1 +|Ahat wi . 1+ [Ahat w|
1 X L s 1 n . 1) . 1 n 1 1
0.3 04 05 06 0.7 08 09 1 0.2 03 04 05 06 07 0.8 0.9 1
Py, Py,

Figure 2: ROC for random matrices of bounded condition number, excluding faults of relative size less than 10 8.

417

ROC: Testing Parallel Operation

plot for ma i 1

gallery matrices

Error Datections
©°
&

02

ROC plot for inversion of 1.0e~10 perturbed gallery matrices.

o o1 02 03 0.4 06 o7 08 09

05
False Alarms.

ROC plot for LU decomposkion of 1.06~10 perturbed gallery matrices

1

° o1 02 03 04 06 07 08 [1

05
Falso Atarms

ROC plot for singular value decomposiion of 1.0e-10 perurbed gallery matrices

03 04 05
Faise Alamns

08 07

0.1 02 03 04 05 06 07

Faise Atarms.

Figure 3: Parallel implementation checked by Matlab computation.

P* is the detection rate when no false alarms are per-
mitted; it is summarized for these experiments in ta-
ble 2. The first two columns of this table come from
the data in figures 1 and 2; the other columns are from
a “worst-case” matrix population taken from the Mat-
lab gallery matrices. Under the average-case test con-
ditions, about 99% of faults could be detected with no
false alarms; this level of performance would seem ad-
equate for REE purposes. In worst-case — and no sci-
ence application should be in this regime — effective-
ness drops to about 80%. This quantifies the heuristic
idea that fault detection should be more effective for
numerically well-posed applications.

6. RESULTS: FAULT-FREE PARALLEL

OPERATION

We briefly examine some characteristics of our parallel
implementation of the checksum procedures described
here. Shown in figure 3 are certain ROC curves for
the four operations we have considered. In contrast to
the results just reviewed, these curves were generated
by checking ScalLAPACK computations with Matlab.'
ScaLAPACK is a well-known mulitprocessor imple-
mentation of many common linear algebraic routines,
analogous to LAPACK in the single-processor setting.
In this test we use randomly perturbed matrices from

1Matlab uses LINPACK ZGEDI/ZGEFA for inv and 1lu, and
ZSVDC for svd. For mult, Matlab uses a straightforward inner
product implementation with nested loops. [6)

418

the Matlab gallery selection. These matrices are gen-
erally ill-conditioned or poorly scaled, but serve as a
demanding test set to check our routines against a
known standard. In this case, for simplicity, the over-
all scale parameter o = 0 and a fixed perturbation
scale € = 10710 was used.

This time, identical matrix operands are given to Mat-
lab and to our ScaLAPACK implementation. Faults
are not injected by modifying operands because our
objective is to verify the correct numerical operation
of our subroutines. Each system computes the full re-
sult matrix; these are combined with the ScaLAPACK
checksum comparison to form an ROC as follows. We
declare that an error has occurred when the two full
results differ by more than a fixed tolerance (1010
in these experiments). An error is declared to have
been detected or not according to whether a check-
sum discrepancy was found by the ScaLAPACK im-
plementation. (The Matlab implementation does not
compute a checksum; it is used only to find the full
result matrix.) With these definitions, a false alarm,
for example, means that ScaLAPACK found a check-
sum discrepancy, but no significant discrepancy was
present in the result of the computation. The ROC
thus serves as a check, via Matlab, on the numer-
ical characteristics of our ScaLAPACK implementa-
tion. In doing these tests, the comparison rule 70 was
used; this has smaller consequences than in the pre-
vious section because most of the perturbed gallery
matrices have roughly unit norm.

These curves were generated b‘y sweeping the thresh-

old 7 used in the ScaLAPACK T°0 test from 0 to co. It
is clear from the curves that there is excellent agree-
ment between the ScaLAPACK and Matlab versions
of mult, lu, and svd. Indeed, when the matrix is
badly scaled, ill-conditioned, or numerically unrealis-
tic — causing ScaLAPACK and Matlab to differ ac-
cording to the full answer — ScaLAPACK finds the
error in the checksum calculation also. In essence, the
message is: if the computation did not succeed, the
checksum test discovers it. Because of the additional
instability of the inverse algorithm, its results are less
definite. One explanation is that the checksum test
is missing some errors that occur in the computed in-
verse; this needs further investigation.

7. CONCLUSIONS

Theoretical results bounding the expected roundoff er-
ror in a given computation provide several types of
input-independent threshold tests for checksum dif-
ferences. The observed behavior of these tests is in
good general agreement with theory, and readily com-
putable tests are easy to define. All operations consid-
ered here (mult, lu inv, and svd) admit tests that are
effective in detecting faults at the 99% level on typical
matrix inputs. Tests of the numerical characteristics
of our parallel implementation of the fault detection
schemes indicate excellent agreement with another nu-
merical package for most operations, except in cases
when the matrix is badly scaled, ill-conditioned, or
numerically unrealistic. In those cases, the schemes
detect an error in the checksum calculation.

APPENDIX

Proof of Corollary 9. Note that d = Aw where A =
I— A(A+ E)~1. Some algebra is necessary to extract
the error E from A. Using the Sherman-Morrison
formula (GVL section 2.1.3) to rewrite the inverse of
A + E we obtain

A=T-AA - AYI+EAYHIEA™Y
=({I+EA) EA! (23)

For numerically realistic matrices, A dominates E and
the first factor is negligible. Heuristically, this is be-
cause F < A implies EA™! < AA~1 = I, collapsing
that factor to I. More formally, inverting a numeri-
cally realistic matrix produces an error matrix E such
that for any vector v, ||[Ev| < || Av| otherwise the
backward error E would be comparable to A. Since v
is arbitrary and A is invertible, we may let v = A~ 'u,
obtaining that [|[EA= u|| < ||ul| = ||Tul|, showing that
the operator EA~! is dominated by I. Therefore we
may neglect the first factor and the norm of the error
is bounded by

ldlleo = llAwlleo
< [Elloo |A™Hloo llwlloo
< 8n°p | Alloo 1A oo wlloou (24)
using the submultiplicative property of norms. As be-

fore, the factor of 8n® is unimportant in this calcula-
tion. Invoking the assumption that A is a numerically

realistic matrix allows us to neglect the growth factor
p, vielding the indicated test.

Acknowledgment

This work was carried out by the Jet Propulsion Labo-
ratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Ad-
ministration.

REFERENCES

(1] D. L. Boley, R. P. Brent, G. H. Golub, and F. T.
Luk. Algorithmic fault tolerance using the Lanczos
method. SIAM J. Matriz Anal. Appl., 13(1):312-
332, 1992.

(2] M. P. Connolly and P. Fitzpatrick. Fault-tolerent
QRD recursive least squares. IEE Proc. Comput.
Digit. Tech.,143(2):137-144, 1996. IEE, not IEEE.

[3] G. H. Golub and C. F. Van Loan. Matriz Compu-
tations. Johns Hopkins Univ., Baltimore, second
edition, 1989.

[4] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE Trans-
actions on Computing, 33(6):518-528, 1984.

[6] F. T. Luk and H. Park. An analysis of algorithm-
based fault tolerance techniques. Journal of Par-
allel and Distributed Computing, 5:172-184, 1988.

[6] MathWorks, 14 April 1999. Personal communica-
tion via e-mail from J. Regensburger.

[7] Wang and Jah. Algorithm-based fault tolerance for
FFT networks. IEFE Transactions on Computing,
43(7):849-854, 1994.

419

420

Michael Turmon is a senior
member of the technical staff
in the Machine Learning Sys-
tems Group at the Jet Propul-
sion Laboratory. He received
Bachelor’s degrees in Computer
Science and in Electrical Engi-
neering from Washington Uni-
versity in St. Louis; he obtained
his Ph.D. in Electrical Engineer-
ing from Cornell University in
1995. He was a National Science
Foundation Graduate Fellow. Michael’s areas of re-
search are in the theory of generalization in neural
networks, and applications of model-based and non-
parametric statistics to scientific image understanding
in large databases. He has been theory co-chair on the
program committee of the annual NIPS (Neural In-
formation Processing Systems) conference, has been
co-investigator on the NASA /ESA SoHO spacecraft,
and won the NASA Exceptional Achievement Medal
in 1999. He is a member of the IEEE (Information
Theory Society) and the Institute for Mathematical
Statistics.

Robert Granat is a member
of the technical staff in the Ma-
chine Learning Systems Group
at the Jet Propulsion Labora-
tory. He received his B.S. in
Engineering and Applied Sci-
ence from the California Insti-
tute of Technology, and his M.S.
in Electrical Engineering from
the University of California, Los
Angeles in 1998. Robert’s areas
; of research are in the application
of unsupervi earning techniques to large data sets,
tomographic imaging, and the modeling of biological
vision systems. He is a member of the IEEE.

